วันพุธที่ 26 กรกฎาคม พ.ศ. 2560

บทที่ 3 จำนวนจริง

3.1จำนวนจริง
เซตของจำนวนจริงประกอบด้วยสับเซตที่สำคัญ  ได้แก่
- เซตของจำนวนนับ/ เซตของจำนวนเต็มบวก เขียนแทนด้วย  I
                   I = {1,2,3…}
เซตของจำนวนเต็มลบ  เขียนแทนด้วย  I
เซตของจำนวนเต็ม เขียนแทนด้วย I
                   I = { …,-3,-2,-1,0,1,2,3…}
เซตของจำนวนตรรกยะ เซตของจำนวนจริงที่สามารถเขียนได้ในรูปเศษส่วน      โดยที่ a,เป็นจำนวนเต็ม  และ b = 0 อ่านเพิ่มเติม

บทที่ 2 การให้เหตุผล


การให้เหตุผลทางคณิตศาสตร์ที่สำคัญมีอยู่ 2 วิธี คือ
         3.1การให้เหตุผลแบบอุปนัย (Inductive Reasoningเป็นการสรุปผลในการค้นหาความจริงจากการสังเกต  หรือการทดลองหลายครั้งจากกรณีย่อยๆ แล้วนำมาสรุปเป็นความรู้แบบทั่วไป ซึ่งข้อสรุปที่ไม่จำเป็นต้องถูกต้องทุกครั้ง
         3.2การให้เหตุผลแบบนิรนัย (Deductive Reasoning เป็นการนำสิ่งที่ยอมรับว่าเป็นจริงมาประกอบเพื่อนำไปสู่ข้อสรุปจากสิ่งที่ยอมรับแล้ว อ่านเพิ่มเติม 


วันพุธที่ 12 กรกฎาคม พ.ศ. 2560

1.4ยูเนียน อินเตอร์เซกชัน และคอมพลีเมนต์ของเซต

1.4ยูเนียน อินเตอร์เซกชัน และคอมพลีเมนต์ของเซต
ยูเนียน (Unionยูเนียนของเซต และเซต จะได้เซตใหม่ ซึ่งมีสมาชิกของเซต หรือเซต  หรือทั้งสองเซต
   “ ยูเนียนของเซตA และเซต เขียนแทนด้วย A   B ”
A   B = {x| x   A หรือ เ ป็นสมาชิกของทั้งสองเซต}
เช่น A = {1,3,5} และ B = {3,6,9}
จะได้  A    B ={1,3,5,6,9}
อินเตอร์เซกชัน (Intersection)อินเตอร์เซกชันของเซต A และเซต จะได้เซตใหม่ ซึ่งสมาชิกเป็นสมาชิกของเซตทั้งเซต และเซต B
   “ อินเตอร์เซกชันของเซตและเซต เขียนแทนด้วย A    B อ่านเพิ่มเติม


1.3 สับเซตและเพาเวอร์เซต

1.3 สับเซตและเพาเวอร์เซต
เซต A เป็นสับเซตของเซต ก็ต่อเมื่อ  สมาชิกทุกตัวของ เป็นสมาชิกของ B เขียนแทนด้วย AB เซต A ไม่เป็นสับเซตของเซต ก็ต่อเมื่อ มีสมาชิกอย่างน้อยหนึ่งตัวของเซต ที่ไม่ป็นสมาชิกของเซต เขียนแทนด้วย AB เช่น
A = {3,5และ B = {1,3,5,7,9}
จะได้ว่า  A     B แต่ B  A
สมบัติของสับเซต
1.            A  A และ   A
2.            ถ้าAB และ BC แล้วAC
3.            ACและ BC ก็ต่อเมื่อ A = B


1.2 เอกภพสัมพัทธ์

1.2 เอกภพสัมพัทธ์
ในการเขียนเซตบอกเงื่อนไขของสมาชิก  จะต้องกำหนดเซตของ  เอกภพสัมพัทธ์  เขียนแทนด้วย โดยมีข้อตกลงว่า  เมื่อกล่าวถึงสมาชิกของเซต จะไม่กล่าวถึงสิ่งอื่นนอกเหนือจากสมาชิกในเอกภพสัมพัทธ์
ตัวอย่างที่ 1 U = {x| x เป็นพยัญชนะในภาษาไทย และ {x| x เป็นพยัญชนะในภาษาไทย 3 ตัวแรก }
จงเขียนเซต A  แบบแจกแจงสมาชิก อ่านเพิ่มเติม

บทที่1 เซต

1.1 เซต
เซต  เป็นคำที่ใช้บ่งบอกถึงกลุ่มของสิ่งต่างๆ และเมื่อกล่าวถึงกลุ่มใดแน่นอนว่าสิ่งใดอยู่ในกลุ่ม สิ่งใดไม่อยู่ในกลุ่ม เช่น
       เซตสระในภาษาอังกฤษ  หมายถึง  กลุ่มของอังกฤษ  a, e, i, o และ u
       เซตของจำนวนนับที่น้อยกว่า 10 หมายถึง  กลุ่มตัวเลข 1,2,3,4,5,6,7,8,และ9
       สิ่งที่ในเชตเรียกว่า  สมาชิก  ( element หรือ members )
การเขียนเซต
การเขียนเซตอาจเขียนได้ 2 แบบ อ่านเพิ่มเติม